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Abstract

A stiffness equation transfer method is proposed for transient dynamic response analysis of structures
under various excitations. This method is a development and refinement of the combined finite element-
transfer matrix (FE-TM) method. In the present method, the transfer of state vectors from left to right in
the FE-TM method is changed into the transfer of general stiffness equations of every section from left to
right. This method has the advantages of reducing the order of the ordinary transfer equation systems and
minimizing the propagation of round-off errors occurring in recursive multiplication of transfer and point
matrices. Furthermore, the drawback that the number of degrees of freedom on the left boundary must be
the same as that on the right boundary in the ordinary FE-TM method, has now been avoided. The
Newmark generalized acceleration formulation for time discretization is employed for a solution of the time
problem. At the end, numerical examples are presented to demonstrate the accuracy as well as the potential
of the proposed method for transient dynamic response analysis of structures.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The development of accurate and computationally efficient algorithms that predict the transient
dynamic response of general structures continues to be the subject of ongoing research. In
dynamic analysis of structures, the finite element (FE) method is the most widely used and
powerful tool. However, the disadvantage of the FE method is that, in the case of complex and
large structures, it is necessary to use a large number of nodes, resulting in very large matrices
which require large computers for their management and regulation. Furthermore, in the
transient dynamic analysis of the structures subjected to random excitations by a direct
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integration method such as the Newmark-b; Houbolt, Wilson-y and central difference method,
these disadvantages of the FE method will become more serious, because in these methods the
sequence of calculations must be repeated many times, i.e. small time steps must be used to obtain
response of the structure accurately.
The purpose of this paper is to propose an improved finite element-transfer matrix (FE-TM)

method of analyzing the transient dynamic response of structures under various random
excitations and we may call it later on the stiffness equation transfer (SET) method.
A combined use of finite element and transfer matrix was proposed by Dokanish for the free

vibration problems of plates [1]. In this approach, a finite element formulation was used to obtain
the stiffness and mass matrices for a strip of elements whose boundaries were successively
connected and whose end boundaries were characterized by state vectors, as defined in the
standard transfer matrix method. As the size of stiffness and mass matrices was equal to the
number of degrees of freedom in only one strip, this approach had the advantage of reducing
the size of a matrix to less than that obtained by the ordinary FE method. Since then, several
authors have proposed refinements and extensions of this method for various linear and non-
linear structural problems [2–11]. However, it is pointed out that, one drawback of the standard
transfer matrix method is that it is often beset with numerical instabilities [12]. In the ordinary FE-
TM method, recursive multiplication of the transfer and point matrices are main sources of
round-off errors. Particularly, in calculating high resonant frequencies or the response of a long
structure, the numerical instability would appear and lead to an unwanted solution. Several
techniques are available to overcome such numerical difficulties [12]. One of the better methods is
to use Riccati transformation or the Riccati transfer matrix method [6–8,13–15]. Chu and Pilkey
have successfully proposed a Riccati transfer matrix method for transient analysis of structural
members [14,15]. Besides, the technique of exchanging the unknown state vectors has been used
for solving this problem [5]. Another drawback of the ordinary FE-TM method is that the
derivation of the transfer matrix from the dynamic stiffness matrix ½G�i for strip i requires the
inversion of sub-matrix ½G12�i and the inversion can be possible only if ½G12�i is a square matrix
[1–3,5–9]. But, ½G12�i is a square matrix only if there are equal numbers of nodes on the right
boundary and on the left boundary of strip i: Therefore, most of the previous formulations of the
combined FE-TM method are only applicable to the models which have the same number of
nodes on all the substructure boundaries.
In order to overcome simultaneously both these disadvantages in the ordinary FE-TM method,

the author proposed a stiffness equation transfer (SET) method for the steady state vibration
response and eigenvalue analysis of structures [16,17]. This study is an extension of this SET
method to the transient analysis of structures subjected to various excitations. The Newmark-b
method is, in this paper, used for time integration, but other integration methods such as the
Houbolt, Wilson-y and central difference methods may also be used. In the present method, the
transfer of state vectors from left to right in the FE-TM method is transformed into a transfer of
general stiffness equations in every section from left to right, and then the inverse matrix of sub-
matrix ½G12�i of the FE-TM method becomes the inverse matrix of sub-matrix ½G11�i: It is well
known that ½G11�i is always a square matrix whether the structures are rectangular or not. The
drawback that the number of degrees of freedom on the left boundary must be the same on
the right boundary in the ordinary FE-TM method, is now avoided. On the other hand, since the
numerical solution of a two-point boundary value problem in ordinary FE-TM method has been
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converted into a numerical solution of an initial value problem, the propagation of round-off
errors occurring in recursive multiplication of the transfer and point matrices can also be avoided.
A program SETTDR based on this method for use on an IBMPC586 microcomputer is

developed. Some numerical examples of transient dynamic response problems are proposed and
their results are compared with those obtained with the ordinary FE method.

2. Direct integration method

Without losing generality, we consider the plate shown in Fig. 1. It is divided into n strips and
each strip is further subdivided into finite elements. The vertical sides dividing or bordering the
strips are called sections. It is apparent that the right of section i is also the left of strip i:
The discretized finite element equations for substructure i at time t þ Dt takes the form

½M�if .UtþDtgi þ ½C�if ’UtþDtgi þ ½K �ifUtþDtgi ¼ fNtþDtgi þ fQtþDtgi; ð1Þ

where ½M�i; ½C�i and ½K�i are the mass, damping and stiffness matrices; fUtþDtgi; f ’UtþDtgi;
f .UtþDtgi; fNtþDtgi and fQtþDtgi are the displacement, velocity, acceleration, internal force and
external force vectors at time t þ Dt; respectively. If the structure is subjected to a ground
acceleration f .Ug0; not a force, then fQtþDtgi ¼ 	½M�if .UtþDtg0: fUtþDtgi; f ’UtþDtgi and f .UtþDtgi are
the relative displacement, velocity and acceleration vectors at time t þ Dt; respectively.
The transient dynamic response of structures is usually determined by numerically integrating

the discretized equations in time. Direct integration methods are commonly used and they are
usually categorized into explicit and implicit ones. Explicit techniques, such as the central
difference method, are most computationally efficient. However, these methods are conditionally
stable. The time step must be less than some critical time step. In contrast, implicit methods are
unconditionally stable. The Newmark-b and Wilson-y methods are the most popular implicit
techniques. For these methods, the accuracy of the response depends on the selection of an
appropriate time step size. The unconditional stability and ease of use of implicit schemes have
resulted in their widespread use for general transient response problems.
In this paper, we use the Newmark-bmethod for time integration [18]. We assume variations for

the displacement fUgi and velocity f ’Ugi in the time interval Dt to be such that the values at the
beginning and end of the time step are related by equations of the form

f .UtþDtgi ¼ f ’Utgi þ ð1	 gÞDtf .Utgi þ gDtf .UtþDtgi; ð2Þ
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Fig. 1. Subdivision of structure into strips and finite elements.
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fUtþDtgi ¼ fUtgi þ f ’UtgiDt þ ½ð1
2
	 bÞf .Utgi þ bf .UtþDtgi�Dt2; ð3Þ

where b and g are parameters that can be determined to obtain integration accuracy and stability.
When b ¼ 1

6
and g ¼ 1

2
; this method reduces to the linear acceleration method, and when b ¼ 1

4
and

g ¼ 1
2
; to the constant average acceleration method.

Eliminating f ’UtþDtgi; f .UtþDtgi from Eq. (1), one obtains an equation with the unknown
variables fUtþDtgi only,

½G�ifUtþDtgi ¼ f %QtþDtgi þ fNtþDtgi; ð4Þ

where ½G�i is the effective dynamic stiffness matrix for the strip i and f %QtþDtgi is the generalized
external force vector, which are given as follows:

½G�i ¼ ½K �i þ ð1=bDt2½M�i þ ðg=bDtÞ½C�i ð5Þ

f %QtþDtgi ¼fQtþDtgi þ ½M�ið1=bDt2fUtgi þ 1=bDtf ’Utgi þ ð1=2b	 1Þf .UtgiÞ

þ ½C�iðg=bDtfUtgi þ ðg=b	 1Þf ’Utgi þ ðg=b	 2ÞDt=2f .UtgiÞ: ð6Þ

Eq. (4) is an equation with unknown variables fUtþDtgi as well as fNtþDtgi and can be solved by
the SET method described in the following. Once the displacement fUtþDtg of the total structure is
obtained, the velocities and accelerations at time t þ Dt are evaluated from Eqs. (7) and (8),
respectively:

f .UtþDtgi ¼ 1=bDt2ðfUtþDtgi 	 fUtgiÞ 	 1=bDtf ’Utgi 	 ð1=2b	 1Þf .Utgi; ð7Þ

f ’UtþDtgi ¼ f ’Utgi þ ð1	 gÞDtf .Utgi þ gDtf .UtþDtgi: ð8Þ

3. A stiffness equation transfer (SET) method

The following derivation is for solving Eq. (4) at time t þ Dt: For simplicity, we omit the
subscript t þ Dt:

3.1. An ordinary finite element-transfer matrix (FE-TM) method

Let fUgR
i ; fNgR

i and f %QgR
i be the right displacement, internal force and generalized external

force vectors of section i; fUgL
iþ1; fNgL

iþ1 and f %QgL
iþ1 be the left corresponding vectors of section

i þ 1; so that we have

fUgi ¼ ½fUgR
i ; fUgL

iþ1�
T;

fNgi ¼ ½fNgR
i ; fNgL

iþ1�
T;

f %Qgi ¼ ½f %QgR
i ; f %QgL

iþ1�
T: ð9Þ

Substituting Eq. (9) into Eq. (4), the latter can be written as

½G�i
fUgR

i

fUgL
iþ1

" #
¼

fNgR
i

fNgL
iþ1

( )
þ

f %QgR
i

f %QgL
iþ1

( )
: ð10Þ
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Matrix ½G�i is the dynamic stiffness matrix for the strip i and it may be partitioned into four sub-
matrices and Eq. (10) may be rewritten as

½G11� ½G12�

½G21� ½G22�

" #
i

fUgR
i

fUgL
iþ1

( )
¼

fNgR
i

fNgL
iþ1

( )
þ

f %QgR
i

f %QgL
iþ1

( )
: ð11Þ

The displacements are continuous across section i; so that we obtain

fUgR
i ¼ fUgL

i : ð12Þ

Without losing generality, we suppose that there is no concentrated external load acting on
section i (concentrated external load acting on section i may be treated as a generalized external
force on the left of strip i), due to the continuity of force at section i; we obtain

fNgR
i ¼ 	fNgL

i : ð13Þ

Substituting Eqs. (12) and (13) into Eq. (11) and with a little algebraic manipulation, Eq. (11) can
be rearranged in the form

fUgL
iþ1

fNgL
iþ1

1

8><
>:

9>=
>; ¼

½T11� ½T12� fQ1g

½T21� ½T22� fQ2g

0 0 1

2
64

3
75

i

fUgL
i

fNgL
i

1

8><
>:

9>=
>; ¼ ½T �i

fUgL
i

fNgL
i

1

8><
>:

9>=
>;; ð14Þ

where

½T11�i ¼ 	½G12�	1
i ½G11�i;

½T12�i ¼ 	½G12�	1
i ;

½T21�i ¼ ½G21�i 	 ½G22�i½G12�	1
i ½G11�i;

½T22�i ¼ 	½G22�i½G12�	1
i ; fQ1gi ¼ ½G12�	1

i f %QgR
i ; fQ2gi ¼ ½G22�i½G12�	1

i f %QgR
i 	 f %QgL

iþ1: ð15Þ

Proceeding as in Refs. [1,5], we obtain the transfer matrix of the state vectors for the total
structure:

fUgL
nþ1

fNgL
nþ1

1

8><
>:

9>=
>; ¼ ½P�

fUgL
1

fNgL
1

1

8><
>:

9>=
>; ð16Þ

in which

½P� ¼ ½T �n½T �n	1?½T �1: ð17Þ

Eq. (16) relates the section variables of the left boundary of the structure to those of its right
boundary. The boundary conditions of the left edge of the structure would require some
components of the state vectors to be zeros. Similarly, the boundary conditions of the right edge
of the structure would also require certain components of the state vectors to be zeros. The known
state variables at the right boundary are substituted into the above relationship to determine the
unknown state variables at the left boundary. After the initial state vector at the left boundary is
known, the state vector at the section can be obtained by recursively applying Eq. (14) until all the
state vectors are known. In this method, it is obvious that the sub-matrix ½G12�i must be a square
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matrix in order to obtain ½T �i: In addition to this, propagation of round-off errors occurs due to
recursive multiplications of transfer matrix ½T �i in Eq. (17).

3.2. Transfer matrix for stiffness equations

In order to overcome the drawback in the ordinary FE-TM method, the present method makes
a change in the transfer of state vectors from left to right in the ordinary FE-TM method to the
transfer of stiffness equations of every section from left to right. At the same time, the recursive
multiplications of the transfer matrix ½T �i are then avoided.
Similarly as in generalized Riccati transformation of state vectors [13], we assume that the

generalized stiffness equations which relate the force vectors to the displacement vectors on the
left of section i are given by

fNgL
i ¼ ½S�ifUgL

i þ fEgi ðiX2Þ; ð18Þ

where ½S�i; the coefficient matrix of the stiffness equation for section i; and fEgi; the equivalent
external force vectors on section i:
Substituting Eqs. (12) and (13) into Eq. (18), we obtain

fNgR
i ¼ 	½S�ifUgR

i 	 fEgi: ð19Þ

Eq. (19) describes the relation between the internal force vectors and the displacement vectors
on the right of section i:
By expanding Eq. (11), we obtain

½G11�ifUgR
i þ ½G12�ifUgL

iþ1 ¼ fNgR
i þ f %QgR

i ; ð20Þ

½G21�ifUgR
i þ ½G22�ifUgL

iþ1 ¼ fNgL
iþ1 þ f %QgL

iþ1: ð21Þ

Substituting Eq. (19) into Eq. (20), we obtain

fUgR
i ¼ 	ð½G11� þ ½S�Þ	1

i ½G12�ifUgL
iþ1 þ ð½G11� þ ½S�Þ	1

i ð	fEgi þ f %QgR
i Þ: ð22Þ

Substituting Eq. (22) into Eq. (21), we have

fNgL
iþ1 ¼ ½S�iþ1fUgL

iþ1 þ fEgiþ1; ð23Þ

where

½S�iþ1 ¼ ½G22�i 	 ½G21�ið½G11� þ ½S�Þ	1
i ½G12�i; ð24Þ

fEgiþ1 ¼ ½G21�ið½G11� þ ½S�Þ	1
i ðf %QgR

i 	 fEgiÞ 	 f %QgL
iþ1: ð25Þ

Eq. (23) represents the relationships between the internal force vectors and the displacement
vectors on the left of section i þ 1:

3.3. Transfer of entire structure

Supposing ½S�2 and fEg2 are known, using Eqs. (24) and (25), ½S� and fEg are transferred from
the left of the second section to the right of the total structure. Hence we have

fNgL
nþ1 ¼ ½S�nþ1fUgL

nþ1 þ fEgnþ1: ð26Þ
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By considering boundary conditions, the known force or displacement variables on right
boundary of the total structure are substituted into Eq. (26) to determine the unknown force or
displacement variables. After the force and displacement vectors on the right boundary of the
total structure are solved, the force and displacement vectors at any section i are calculated from
right to left by Eqs. (22) and (19).
It is noteworthy that the transfer matrix ½P� for the ordinary FE-TM method [9,11] is replaced

by the transfer matrix ½S�nþ1 in Eq. (26) for the SET method. The dimension of the matrix ½S�nþ1 is
only half that of the matrix ½P�: In the SET method, the storage requirements would only be about
half of the FE-TM method. In addition, the transfer matrix ½S�nþ1 is obtained by recursively using
Eqs. (24) and (25), and not by recursive multiplication of transfer and point matrices, so the
propagation of round-off errors occurred in recursive multiplication of transfer and point
matrices is thus avoided.

3.4. The method of determining ½S�2 and fEg2

In Eq. (18), let i be 2, we obtain

fNgL
2 ¼ ½S�2fUgL

2 þ fEg2: ð27Þ

For strip 1, by expanding Eq. (11), we have

½G11�1fUgR
1 þ ½G12�1fUgL

2 ¼ fNgR
1 þ f %QgR

1 ; ð28Þ

½G21�1fUgR
1 þ ½G22�1fUgL

2 ¼ fNgL
2 þ f %QgL

2 : ð29Þ

It is obvious that fUgR
1 and fNgR

1 may be determined by using left boundary conditions of the
total structure.

3.4.1. Displacement boundary condition

It is obvious that fUgR
1 is known in a displacement boundary condition, hence by Eq. (29), we

obtain

fNgL
2 ¼ ½G22�1fUgL

2 þ ½G21�1fUgR
1 	 f %QgL

2 : ð30Þ

Comparing with Eq. (27), we have

½S�2 ¼ ½G22�1; ð31Þ

fEg2 ¼ ½G21�1fUgR
1 	 f %QgL

2 : ð32Þ

3.4.2. Force boundary condition
It is obvious that fNgR

1 is known in a force boundary condition, hence fUgR
1 is obtained from

Eq. (28).

fUgR
1 ¼ 	½G11�	1

1 ½G12�1fUgL
2 þ ½G11�	1

1 ðfNgR
1 þ f %QgR

1 Þ: ð33Þ

Substituting the fUgR
1 into Eq. (29), we have

fNgL
2 ¼ ð½G22�1 	 ½G21�1½G11�	1

1 ½G12�1ÞfUgL
2 þ ½G21�1½G11�	1

1 ðfNgR
1 þ f %QgR

1 Þ 	 f %QgL
2 : ð34Þ

ARTICLE IN PRESS

H. Xue / Journal of Sound and Vibration 273 (2004) 1063–1078 1069



Comparing with Eq. (27), we have
½S�2 ¼ ½G22�1 	 ½G21�1½G11�	1

1 ½G12�1; ð35Þ

fEg2 ¼ ½G21�1½G11�	1
1 ðfNgR

1 þ f %QgR
1 Þ 	 f %QgL

2 : ð36Þ

3.4.3. Mixture boundary condition

In mixture boundary condition, we suppose fUgR
1 ¼ ½fU 0gR

1 ; fU 00gR
1 �

T and the corresponding
fNgR

1 ¼ ½fN 0gR
1 ; fN 00gR

1 �
T: If fU 0gR

1 is unknown and fU 00gR
1 is known, the corresponding fN 0gR

1 is
known and fN 00gR

1 is unknown. For strip 1, Eq. (11) is rearranged and repartitioned, so we have

½H11� ½H12� ½H13�

½H21� ½H22� ½H23�

½H31� ½H32� ½H33�

2
64

3
75

fU 0gR
1

fU 00gR
1

fUgL
2

8><
>:

9>=
>; ¼

fN 0gR
1

fN 00gR
1

fNgL
2

8><
>:

9>=
>;þ

f %Q0gR
1

f %Q00gR
1

f %QgL
2

8><
>:

9>=
>;: ð37Þ

Expanding Eq. (37) and solving the relations between fNgL
2 and fUgL

2 ; we obtain

½T �2 ¼ ½H33� 	 ½H31�½H11�	1½H13�; ð38Þ

fEg2 ¼ ½H31�½H11�	1ðfN 0gR
1 þ f %Q0gR

1 Þ þ ½H32�fU 00gR
1 	 ½H31�½H11�	1½H12�fU 00gR

1 	 f %QgL
2 : ð39Þ

4. Numerical examples

In order to investigate the accuracy and the computational efficiency of our method, we
developed a program SETTDR based on this method for use on an IBMPC586 microcomputer
and give four numerical examples for illustration.
As the first example, a simply supported beam was subjected to a step load P of 100 kg at its

middle point, as shown in Fig. 2. For this sample problem, the physical parameters of this beam
are as follows: length L ¼ 20 m; flexure strength EJ ¼ 6:4� 107 kg m2 and rF ¼ 987 kg s2 m	2;
here r is the mass density and F the area. The damping is neglected. The beam is divided into 20
elements and the number of nodes is 21. The total response time is 10 s:
The exact solution of this problem is as follows:

yðx; tÞ ¼
2Pl3

p4EJ

X1;3;5?
i¼

ð	1Þði	1Þ=2 1

i4
sin

ipx

l
ð1	 cosoitÞ;

where

oi ¼ i2p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=rFl4

q
:
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Fig. 2. A simply supported beam subjected to step function force at its middle point.
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Fig. 3 shows the displacement response of the middle point of the beam for the first 10 cycles.
The exact solution is shown as a solid line. Superimposed on the exact solution is the response
obtained by using the SET method. For this example, a time step of 0:005 s was chosen for the
time integration. The comparison indicates that the results from using the SET method are
completely coincident with the exact solutions.
A plane frame subjected to the EL Centro earthquake wave at the base (the example selected

from SAP5 manual), shown in Fig. 4, has been analyzed as the second example. Each node of the
frame has two degrees of freedom u and yz; and for horizontal beams, the horizontal displacement
of the node at two end points has the master and slave relation. The physical parameters of the
beams forming the frame are as follows: modulus of elasticity E ¼ 30� 106 psi; the Poisson ratio
n ¼ 0:3; a specific weight g ¼ 0:286 lb in	3; modal damping parameter xi ¼ 0:05 (for all modes),
other geometrical parameters, see SAP5 manual. For this example, a time step of 0:005 s was
chosen for the FE method (SAP5 program) and the SET method (SETTDR program). Figs. 5–8
show the horizontal displacement response of nodes 21, 17, 11 and 7, respectively. The maximum
displacement response for the nodes of the frame during the time of 10 s is shown in Table 1. The
maximum internal force (flexure moment) response for the beams of the frame during the time of
10 s is shown in Table 2. Table 3 shows a comparison of computation time between the two
methods in this example. As can be seen from Figs. 5–8, Tables 1 and 2, very little difference exists
between the results for the first 10 s: The maximum value of the displacement and the flexure
moment between the results are much the same. The SET method has the same accuracy with the
FE method, but it has higher efficiency than the latter.
The third example is to obtain the dynamic response of a cantilever trapeziform plate under EL

Centro earthquake wave as shown in Fig. 9 (vertical direction), where the physical parameters of
the plate are as follows: length l ¼ 90 cm; width a ¼ 90 cm; b ¼ 60 cm; thickness t ¼ 0:635 cm; a

ARTICLE IN PRESS

Fig. 3. Middle point displacement of a simply supported beam.
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Fig. 4. A frame structure.

Fig. 5. Horizontal earthquake displacement of the frame node 21 under EL Centro ground excitation.
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specific weight g ¼ 78 kNm	3; the Poisson ratio n ¼ 0:3; modules of elasticity E ¼ 2:0� 105 MPa;
Rayleigh damping constant a ¼ 0:1; b ¼ 0:05: In the numerical calculation, the plate is divided
into 9 substructures which are further divided into many triangular plate elements and time step
Dt ¼ 0:005 s is used. Fig. 10 shows the dynamic response displacement for node 4 of the plate.
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Fig. 6. Horizontal earthquake displacement of the frame node 17 under EL Centro ground excitation.

Fig. 7. Horizontal earthquake displacement of the frame node 11 under EL Centro ground excitation.
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Fig. 8. Horizontal earthquake displacement of the frame node 7 under EL Centro ground excitation.

Table 1

The maximum displacement response for the nodes of the frame under EL Centro ground excitation (in)

Node number 3 7 11 15 17 19 21

FE (SAP5) 0.1789 0.5676 0.9533 1.355 1.534 1.677 1.776

SET (SETTDR) 0.1791 0.5678 0.9508 1.351 1.526 1.676 1.773

Table 2

The maximum flexure moment for the beams of the frame under EL Centro ground excitation (lb in)

Beam number 1 7 13 19 25

FE (SAP5) 1:33� 106 6:62� 105 5:70� 105 4:51� 105 2:08� 105

SET (SETTDR) 1:33� 106 6:63� 105 5:69� 105 4:52� 105 2:06� 105

Table 3

Comparison of computation time for the frame

Method by applying Computation time (s)

FE (SAP5) 11.5

SET (SETTDR) 6.2
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From the above results, it can be seen that the computed results by the present method are almost
the same as those obtained by the FE method. A comparison of computation time shown in Table
4 indicates that the computation efficiency of the present method is higher than that of the FE
method. In this example, the number of nodes on the left boundary is 10, and that on the right
boundary is 8. Most of the ordinary FE-TM methods can only be applied to the chain-like
structure with equal number of degrees of freedom on the boundaries, so the ordinary FE-TM
method [5,11] cannot be used in this case. The present method has potentially wider application
than the ordinary FE-TM method.
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Fig. 9. Cantilever trapeziform plate model.

Fig. 10. Vertical earthquake displacement for the node 4 of the trapeziform plate under EL Centro ground excitation.
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In the fourth example, we analyzed a shear-wall structure with supporting frames to
demonstrate the wider applicability of the present method. The present SET method can not only
be applied to simple structures, but also to the more complicated structures. The shear-wall
structure as shown in Fig. 11 was subjected to the EL Centro earthquake wave at the base. Each
node has six degrees of freedom u; v;w; yx; yy; yz: The shear-wall consists of 30 rectangular plate
elements, where the physical and geometric parameters of each plate element are as follows:
E ¼ 3� 1010 Pa; m ¼ 0:1667; r ¼ 3000 kgm	3; thickness t ¼ 0:2 m; length l ¼ 8 m; and width
b ¼ 3 m: The total number of beam and column elements forming the supporting frames is 150.
Their physical and geometric parameters are as follows: E ¼ 3� 1012 Pa; r ¼ 2500 kgm	3: For
horizontal beams, the dimension is 8 m� 0:28 m� 0:28 m: For longitudinal columns, it is 3 m�
0:4 m� 0:4 m: Rayleigh damping constant a ¼ 0:02; b ¼ 0:01 and time step Dt ¼ 0:005 s: Fig. 12
shows the horizontal dynamic response displacement of node 77 computed by the SET method
and the FE method, respectively. A comparison of computation time is shown in Table 5. Similar
results as in Examples 2 and 3 are obtained. The size of the matrix in the FE method is much
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Fig. 11. A shear-wall structure with supporting frames.

Table 4

Comparison of computation time for the plate

Method by applying Computation time (s)

FE (SAP5) 102.5

SET (SETTDR) 57.8
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larger than that in the present method. The computational efficiency of our method is higher than
that of the FE method.

5. Conclusion

A stiffness equation transfer method for solving the transient dynamic response problems of
structures is proposed and illustrated by four examples. An SETTDR microcomputer program
based on this method is developed. Some numerical examples presented in this paper show that
the proposed method can be successfully applied to the transient dynamic response analysis of
structures under various excitations. In the present method, the transfer of state vectors from left
to right in the ordinary FE-TM method is changed into the transfer of general stiffness equations
of every section from left to right. This method has the advantages of reducing the order of
standard transfer equation systems and minimizing the propagation of round-off errors occurring
in recursive multiplication of transfer and point matrices. Furthermore, the drawback that the
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Fig. 12. Horizontal earthquake displacement for the node 77 of the shear-wall structure under EL Centro ground

excitation.

Table 5

Comparison of computation time for the shear-wall structure

Method by applying Computation time (s)

FE (SAP5) 284.8

SET (SETTDR) 112.3
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number of degrees of freedom on the left boundary must be the same on the right boundary in the
ordinary FE-TM method, has now been avoided. Therefore, the present method has potentially
wider application than the ordinary FE-TM method.
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